Japan Radio Co., Ltd.
Company Profile
Renewed JRC Group

Harnessing our abundant technologies, know-how, and experience in communications and information, we will address the needs of society and customers and contribute to broad-ranging social advancement.

Since our foundation in 1915, we have received valuable support from all stakeholders—including customers, shareholders, business partners, local communities, and employees—enabling us to celebrate our 100th anniversary in October 2015. We express our heartfelt thanks for helping us reach this milestone.

Today, corporations are expected to do much more than generate employment and return profits to society. In this era, corporate value is also determined by many other factors. These include compliance with laws, environmental and energy-related initiatives, dialog with emerging nations, and addressing the ageing society of the future.

In the next hundred years as well, we will pursue sound business activities based on our corporate commitment, which is "to help realize a prosperous society by combining our wisdom and creativity to deliver exceptional value." At the same time, we regard fulfillment of our corporate social responsibilities to be our mission and key role. Going forward, we will target progress as a corporate group that offers safe, reliable, and environmentally friendly products and services to people around the world.

To achieve this aim, the Renewed JRC Group—consisting of JRC, Nagano JRC, and Ueda JRC—will harness its abundant technologies, know-how, and experience in communications and information, amassed over many years, to address the needs of society and customers. Our quest is to continue delivering quality products and services that contribute to broad-ranging social advancement.

We hope you understand our basic policies, and we look forward to your cooperation.

Representative Director and President
Kenji Ara

Connecting people with reliable technologies.
JRC is a leading communications technology company.

JRC is making the most of its knowledge, technology and experience built up over many years in various fields of information technology, contributing to the safety and security of people around the world. Based on its core technologies that it has developed since its founding, JRC is creating new worlds of communications from people to people and to environments by leveraging its three business units, Marine Systems, Communications and Solutions.

Envisaging the Future: JRC’s Core Technologies

Disaster prevention, social infrastructure
- Advanced disaster prevention and minimization
- Building maintenance

Advanced communications
- Advanced information provision systems
- Public-sector wireless broadband systems

Environmental and energy solutions
- Diversified, smart society
- Hydrogen-based society

Creating social value
- Health care
- Advanced medical treatment
- Self-support for elderly

JRC’s Three Business Domains

Marine Systems
Marine Systems Division
- Based on its prominent technological capacity and vast accumulated experience that have been leading the world market for marine electronics, JRC is and will develop a variety of products with high performance and superior quality to support safety and security of navigation for all the vessels including merchant ships, work boats and fishing boats in the world’s oceans and seas.

Communication
Communication Products and Network Division
- JRC supports various business sectors using radio communications in covering a wide range of products from portable/mobile communications terminals to communications infrastructure networks to respond to the expanding and ever-changing information and social society.

Solution
Solution Business Division
- JRC’s solution business provides products and services to support infrastructure-related projects dedicated to improving quality of life.
Connecting
people and society

J-Marine Cloud
Visualizing everything from land to marine operation. We add various content to target safe, secure, smart operational management.

Remote maintenance system (RMS)
Uses JRC’s voyage data recorder as a server to diagnose operational status of JRC-made onboard marine electronic equipment remotely from land. This is a unique JRC system.

Inmarsat communications equipment
A compact Ka-band marine satellite communication device compatible with Fleet Xpress (high-speed communication) service for marine vessels.

Multifunction display (MFD) radar
A radar that can be used on various marine vessels and also conforms to International Maritime Organization (IMO) regulations. It is multifunctional and can be upgraded for compatibility with ECDIS, conning, alarm management, and other platforms.

Scanning sonar
Sonar for small vessels featuring high detection capability. It has a high-accuracy motion correction function on a pan and a scan with equipment for large ships, and can track targeted schools of fish even in rough seas without chasing them away.

International VHF radiotelephone device
Compatible with Class A DSC that also conforms to the latest Global Maritime Distress and Safety System (GMDSS). It has a compact design that integrates the operational unit and the transceiver, with a touch-panel display to improve operability.

From standalone products to total solutions. JRC’s wireless communication technologies address diversified social needs and propel today’s business fields into the future.
Weather / Disaster Prevention / Rivers

We help prevent disasters, and provide appropriate backup for integrated water management. JRC offers products and services that protect your life and assets.

Doppler meteorological radar
Doppler meteorological radar that can detect rain and snowfall intensity and vector three-dimensionality. Used to monitor weather conditions and predict volatile weather occurrences. Deployed radar sensors and signal processing technologies to enable highly stable, high-precision output of multifaceted data.

X-band compact meteorological radar

Dam management systems
JRC’s management systems, used to mitigate floods and ensure water resources more efficiently, boast more than half a century of technologies and reliability. They address diversified needs and have the top market share in this field.

Discharge alarm system
Uses various methods (including sirens for downstream residents) to provide warnings when water is released from dams and weirs. Consists of an alarm station (for downstream warnings), a control monitoring station that controls it (dam management office), and relay stations.

Telemetry system
System that uses wireless and dedicated lines to gather rainfall and water level data from remote locations.

Landslide disaster monitoring system
Gathers information on rainfall volume and the like at sites deemed vulnerable to landslides. Also organizes processing equipment and provides warnings and evacuation support.

Wireless LAN systems
From embedded to outdoor communications, JRC’s wireless LAN systems are highly reliable. They can be easily used for temporary network construction and at event venues and disaster sites.

Wireless IP network
JRC’s 25GHz-band low-power data communication device delivers transmission speeds up to 240Mbps. Not requiring a license, it saves communication costs and facilitates construction of wireless networks.

Conferencing support system
JRC’s iCASS is a conferencing support system enabling “smarter” operation of conference halls and the like. It incorporates the latest audio, video, and digital distribution technologies to ensure effective conferencing support.

Digital broadcast wireless system
A municipal radio communication system that transmits disaster and administrative information to local residents. Enables improved data efficacy and confidentiality, as well as two-way communication. In addition to transmission via loudspeaker, also compatible with multiple disaster prevention applications.

Digital Land Mobile Radio (LMR)
Highly robust LMRs (both portable and vehicle-mounted radios) developed as OEM business for the public safety market. The LMRs are being deployed to support public safety entities, such as police, fire departments in North America and around the world.

PHS terminals
Waterproof, dustproof design enables reliable operation even at water parks and outdoor worksites. Boasts waterproof performance equivalent to IP65 and IP67 and dustproof performance equivalent to IP5X.

City
To be more personal, and ever more global. JRC’s pioneering technology is the future of communication.
Broadcasting
From local radio and television to worldwide satellite communications, JRC provides high quality broadcasting technology.

- **Digital TV relay transmitter** Features improved corrosion resistance due to separation of the ventilation system and internal parts. It also employs a pre-distortion compensation method to provide high distortion efficiency, and its transmitter goes up to 200W.
- **TTL device for TS transmission** 24-Volt P+ diode switch to enable high-speed transmission switching. The receiver supports In-phase composite space diversity (excluding E, F, and G bands).
- **Medium-wave broadcasting** Medium-wave broadcasting, acknowledged to be effective for emergency broadcasts in times of disaster, is suitable for moving vehicles and mobile receivers. JRC uses medium-wave technology, combined with digital technology, to offer a range of broadcasting equipment for each radiovoice output.
- **Satellite communication systems** By constructing satellite communication systems in combination with control stations, smart-aperture terminals, and terrestrial communications networks, JRC offers a multitude of solutions.

Industries / Facilities
Responding to the needs of our highly information-based society, JRC’s technology contributes to safe and secure business growth.

- **Maritime security system** Radar system for monitoring suspicious vessels approaching oil facilities (electric power, gas, oil, etc.) as well as fishing grounds. Can monitor over distances of 10km or more.
- **Driving simulator** A device for road-testing pseudo-space of high-speed roads and urban areas displayed on a screen. Enables experiments in cases where using real cars would be dangerous, as well as repeatable experiments.
- **RC radar** World’s first internal surveying instrument for concrete structures that uses a smartphone as the display. Separating the display from the main unit allows surveys that could not be done previously, and communication functions can also be used to enable data sharing.
- **Land mobile radio** In addition to various wireless systems that employ professional-use equipment to enhance safety and security, we are developing an OEM business for IP radio device that uses mobile phone networks.

Roads / Railways
Making full use of our intelligent transportation systems (ITS) and communications technology, we provide support for safe and smooth transportation.

- **Tunnel radio rebroadcasting system** Mike car radio programs year-round to be heard while in tunnels. Supports safety by interrupting broadcasts to provide warnings and evacuation information via radio to car occupants at times of accidents and the like.
- **Road information management system** Collects information on construction regulations, weather conditions, and the like so that road management teams can perform their tasks accurately. Information collected can also be utilized by general road users.
- **Railway safety system** Delivers warnings to line maintenance workers when an approaching work vehicle poses a potential danger. Consists of devices mounted on maintenance vehicles, devices installed at appropriate sections of the railway line, and portable receivers for workers.
- **ETC2.0 devices for motorcycles** JRC-made products boast the No.1 share of the domestic market for onboard GPS receivers. This is a vehicle-mounted ETC2.0 device for motorcycles with exceptional waterproof and shockproof performances and positioning accuracy.

Embedded Products
Modules and microchips of minuscule size with super-sensitivity, high precision and low power consumption are essential components in all manner of devices.

- **GPS/GNSS module** A multi-constellation (GPS/Galileo/QZSS/GLONASS/BeiDou/SBAS) module that is compatible with satellite positioning systems of various countries. Also reliably accurate in urban areas.
- **Mobile locator** Provides real-time dynamic management by transmitting GPS position information via public communication networks.
- **VICS beacon transceiver** Enables traffic information (about traffic congestion, accidents, regulations, and the like provided by the VICS system) to be broadcasted on board with the help of the VICS beacon transceiver.
Deploying wireless communication technologies amassed over more than a century to meet the needs of the times.

Since its foundation, JRC has continued creating products at the leading edge. Based on technologies and know-how amassed over more than a century, we have deepened our core technological expertise in such areas as antennas, signal processors, amps, and networks. In the communications field, which has advanced significantly in recent years, we help build a prosperous society by providing solution-based services that meet the sophisticated needs of society. JRC’s R&D mission is to foster the creation of a better society by connecting people, things, and communities. We tackle H&U challenges so that we can contribute to safety and peace of mind in the world.

Wireless technology advancement: Millimeter wave high-capacity communication system

As an outdoor point-to-point communication application using the 40GHz band, JRC has deployed same-site non-reciprocal frequency and simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission to double the frequency utilization rate and thus achieve a real two-way simultaneous transmission.

Radar system advancement: Radiowave environment adaptation radar

In the overcrowded waters occupied by solid-state radar, we expect interference of marine vessel radar to increase significantly. JRC has achieved excellent interference removal performance through frequency channel switching and environmental adaptation functions. We also succeeded in eliminating interference from solid-state radar from more than 400 vessels under difficult conditions employing false signals.

Positioning technology advancement: Next-generation GPS receiver

In 1990, JRC released the world’s first GPS receiver for automobile navigation use. In 2015, we sold around 10 million units. In addition to the United States (GPS), we offer positioning systems for various other nations/regions, notably Russia (GLONASS), Europe (Galileo), China (BeiDou), and Japan (QZSS). We will continue targeting top-level positioning accuracy.

World-leading technologies born through JRC’s research and development

JRC uses rigorous quality control and stringent reliability and evaluation testing across all phases of its products and systems—development, design, manufacture, and installation—in order to foster safety and peace of mind for customers. We also implement the plan-do-check-act (PDCA) cycle in an effort to offer products that satisfy customers.

Meticulous quality control system delivers higher levels of safety and peace of mind

JRC was certified for the ISO 9001 quality management system (QMS) in 1994. In 2003, we completed the shift to ISO/IEC 2004. We set up our organization and system for quality assurance and are continuously improving them throughout JRC group of companies in accordance with the ISO standards. In every division, we are working to assure quality to our customers can see all our products safely and securely. We must be accurate to determine the needs of a variety of customers for a wide range of products from typical mass-produced products such as ETC modules units for the consumer market to the marine systems required to have the quality to withstand special navigational environmental conditions, and the meteorological radar and dam control systems manufactured to customer specifications.
Committed to offering exceptional value to foster social prosperity, we deploy our technologies to build a sustainable society.

Since our founding in 1915, we have refined our information communications technologies, bringing a wide range of products to the world. We are doing our business operations to proactively contribute to social development as well as conservation of the global environment. JRC’s radio and communications technologies are serving a wide range of fields from regional disaster mitigation to ship navigation at seas and oceans, bringing safety and security to the people in the world.

Corporate activities

Each and every employee strives to realize JRC’s corporate philosophy through his/her actions.

Management Philosophy

Japan Radio Co., Ltd. shall apply its full creative and intelligent resources to develop technologies and products of superior value, in order to contribute to the realization of a society of ever higher quality.

JRC has established three levels of a code of conduct for our officers, employees, and people we work with.

- Basic Policy of Management
 - 1. JRC shall at all times give its first priority to the needs of the customer.
 - 2. JRC shall apply its creative powers to the development of innovative technologies and excellent products.
 - 3. JRC shall foster the mutual trust and prosperity of all persons concerned with the company.
 - 4. JRC shall consistently conduct secure business activities, so as to tenet its genuine responsibility to society.
 - 5. JRC shall continuously strive to build an ever more open, fair and satisfying work environment for its employees.

Information security

By obtaining ISMS certification, we will further improve information security and provide services that customers can use with peace of mind.

Environmental Initiatives

We recognize environmental conservation as the most important common concerns for all mankind, and reflect this in all aspects of our business.

Clean Product Design “JRC Eco Symbol”

JRC provides the eco symbol with products that comply with the in-house evaluation criteria established by it (so-called Type II Environmental Label). This symbol indicating the registration number in four-digit representing an evaluation criteria applied to is shown on such products or their belongings such as package, operation manual and so on.

Promoting biodiversity

In collaboration with the Tokyo University of Marine Science and Technology, JRC collects basic data aimed at conserving fishery resources in Tokyo Bay. Here, we use J-Marine, an advanced IRS navigation system, to analyze the wakes of fishing boats. We also offer technical assistance in studying the habitats of the whitespotted conger eel, which, like the Japanese eel, requires protection as its habits are not properly understood.

Regional and social activities

JRC contributes to sustainability and longevity of society, which is confronted with various challenges, including a low birthrate and aging population.

AM radio assembly class

JRC holds AM radio assembly classes all around Japan to encourage an interest in science among local children. In preparation for these events, we ask local social welfare groups to help with affixing components to sheets.

Lending radios to support disaster hit areas

We lent out radio equipment to areas hit by the Chu-etsu offshore earthquake and the Great East Japan Earthquake. By lending radio equipment and transportable satellite earth stations to the local governments, we are contributing to securing routes of communications.
Expanding our service network in Japan and overseas.

Domestic Sales Bases

- **Tokyo**
 - Phone: +81-3-6832-1721 Fax: +81-3-5534-7801
- **Osaka**
 - Phone: +81-6-6344-1637 Fax: +81-6-6344-1714
- **Nagoya**
 - Phone: +81-52-515-0100 Fax: +81-52-515-0101
- **Fukuoka**
 - Phone: +81-92-883-8871 Fax: +81-92-885-3297
- **Sendai**
 - Phone: +81-22-334-3343 Fax: +81-22-334-3344

International Business Bases

Asia

- **Manila Branch**
 - Phone: +63-2-8442-0000 Fax: +63-2-8442-0001
- **Tokyo Representative Office**
 - Phone: +81-3-3521-3700 Fax: +81-3-3521-3701

Europe

- **London**
 - Phone: +44-207-148-1100 Fax: +44-207-148-1101

Main Subsidiaries

- **Nagano Japan Radio Co., Ltd.**
 - Ueda Japan Radio Co., Ltd.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
 - JRC MARINFONET CO., LTD.
 - JRC Tokki Co., Ltd.
 - JRC (Shanghai) Co., Ltd.
Profile

Company Data

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Japan Radio Co., Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Office</td>
<td>NAKANO CENTRAL PARK EAST, 10-1, Nakano 4-chome, Nakano-ku, Tokyo 164-8570</td>
</tr>
<tr>
<td>Phone</td>
<td>+81-3-6832-1721</td>
</tr>
<tr>
<td>Mitaka Office</td>
<td>21-11, Mure 6-chome, Mitaka-shi, Tokyo 181-0002</td>
</tr>
<tr>
<td>Phone</td>
<td>+81-42-45-9183</td>
</tr>
<tr>
<td>Founded</td>
<td>December 1915</td>
</tr>
<tr>
<td>Paid-in Capital</td>
<td>14,704 millions of Yen</td>
</tr>
<tr>
<td>Number of Employees (Non-consolidated)</td>
<td>2,335</td>
</tr>
<tr>
<td>Number of Employees (Consolidated)</td>
<td>5,571</td>
</tr>
<tr>
<td>Net Sales (Non-consolidated)</td>
<td>90,876 millions of Yen</td>
</tr>
<tr>
<td>Net Sales (Consolidated)</td>
<td>142,909 millions of Yen</td>
</tr>
<tr>
<td>Classification of Business</td>
<td>Manufacture and Sale of Radio Communication Equipment</td>
</tr>
</tbody>
</table>

As of 31 March, 2017

Organization Chart

General Affairs

Chairman

President

Board of Directors

Board of Management

Board of Executive Officers

Board of Corporate Auditors

Management Strategy

Corporate Planning Department

Sales & Marketing Department

CIS Promotion Department

Legal & Intellectual Property Department

IT Promotion Department

Research and Development

Corporate R&D Strategy Department

Research & Development Department

Bosnian Project

Technology

Technical Development Department

Product Design Department

Mechanical Design Department

Engineering Administration Department

Satellite Technical Development Center

Procurement

Procurement Department

Supplier Chain Management Department

Quality Assurance

Quality Assurance Department

Quality Assurance Department - Communications Equipment

Quality Assurance Department - Marine Systems

Quality assurance - Environmental / Safety assurance

Business Operation

Business Management Department

Product Management Department

Business Planning Department

Business Engineering Department

Automotive Business Department

Marine Systems Division

Business Planning Department

Marine Business Department

Marine Engineering Department

Marine Service Department

Marine Safety Engineering Department

Solid Systems Division

Business Planning Department

Business Development Department

Public Infrastructure Business Department

Consumer Business Management Department

International Business Management Department - Manila Branch

Engineering Management Department

Wireless Infrastructure Department

Water Infrastructure Department

Global Infrastructure Engineering Department

System Integration Department

Field Engineering Management Department

Subsea Systems Division

Subsea Planning Department

Subsea System Planning Department

Subsea System Engineering Department

Subsea System Product Management Department

Subsea System Quality Assurance Department

Hokuriku Regional Branch

Tokai Regional Branch

Kanto Regional Branch

Tohoku Regional Branch

Hokkaido Regional Branch

Kyushu Regional Branch

Chugoku Regional Branch

Kansai Regional Branch

Chubu Regional Branch

Biosensor Project

Research and Development Department

Corporate R&D Strategy Department

Facilities Administration Department

Outside Corporate Auditor - Kenji Arai

Outside Director - Hideo Iida

Standing Corporate Auditor - Takehito Ikeda

Outside Corporate Auditor - Masaaki Hori

Executive Director - Atsunori Sasaki

Director - Ryo Ogura

Director - Tatsuya Kobayashi

Director - Juichiro Kinura

Director - Takamori Ikeda

Director - Takanori Ikeda

Director - Tomohiro Waki

Director - Nobuyuki Adachi

Director - Hisatake Igarashi

Director - Hideaki Kamata

Director - Masatoshi Magarifuchi

Director - Hisao Ashizawa

Director - Toshihiko Fujisawa

Director - Koichi Katagami

Director - Hiroyuki Akitani

Director and Managing Executive Officer - Takanori Ikeda

Director and Managing Executive Officer - Toshiyuki Komiya

Director and Managing Executive Officer - Tooru Takahashi

Director and Executive Officer - Tomohiro Waki

Executive Director - Atsunori Sasaki

Executive Officer - Noriaki Yokoi

Executive Officer - Tomohiro Waki

Executive Officer - Hiroyuki Akitani

Executive Officer - Hiroyuki Akitani

Executive Officer - Koichi Katagami

Executive Officer - Hisato Igarashi

Executive Officer - Hideaki Kamata

Executive Officer - Masatoshi Magarifuchi

Executive Officer - Koichi Katagami

Executive Officer - Koichi Katagami

Inside Corporate Auditor - Masatsune Sasaki

Inside Corporate Auditor - Masatosune Sasaki
The History of JRC

Our first step in 1915 connects to the world now.

<table>
<thead>
<tr>
<th>Year</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917</td>
<td>Feb. The company is reorganized as Nippon Radio Telegraph and Telephone Co., Ltd.</td>
</tr>
<tr>
<td>1918</td>
<td>Apr. A technical assistance contract is concluded with TELEFUNKEN GmbH in Germany.</td>
</tr>
<tr>
<td>1930</td>
<td>Oct. Our factory relocates to newly constructed facility in Mitaka, Tokyo.</td>
</tr>
<tr>
<td>1933</td>
<td>Jul. Our company name changes to "Japan Radio Co., Ltd."</td>
</tr>
<tr>
<td>1945</td>
<td>Nov. Japan's first "real-time signal analyzer" is released.</td>
</tr>
<tr>
<td>1947</td>
<td>Mar. "Fully nationalized 15kW power broadcasting transmitter" is developed.</td>
</tr>
<tr>
<td>1948</td>
<td>Apr. A technical assistance contract is concluded with TELEFUNKEN in Germany.</td>
</tr>
<tr>
<td>1949</td>
<td>Jul. Our factory relocates to newly constructed facility in Nakano, Tokyo.</td>
</tr>
<tr>
<td>1957</td>
<td>Jul. Our factory relocates to Nishishinjuku, Shinjuku-ku, Tokyo.</td>
</tr>
<tr>
<td>1960</td>
<td>Dec. We introduce our system of independent divisions.</td>
</tr>
<tr>
<td>1961</td>
<td>Dec. Japan's first "cavity magnetron" is developed.</td>
</tr>
<tr>
<td>1962</td>
<td>Nov. Japan's first "digital flight simulator" is developed.</td>
</tr>
<tr>
<td>1963</td>
<td>May "Japan’s first "9GHz marine RADAR" is developed.</td>
</tr>
<tr>
<td>1964</td>
<td>Oct. MARINFONET CO., LTD. (current JRC MARINFONET CO., LTD) is founded.</td>
</tr>
<tr>
<td>1967</td>
<td>Jul. "Japan’s first "digital flight simulator" is developed.</td>
</tr>
<tr>
<td>1968</td>
<td>Aug. "Japan’s first "9GHz marine RADAR" is developed.</td>
</tr>
<tr>
<td>1969</td>
<td>Oct. A "compact, transistor-type marine RADAR" is developed.</td>
</tr>
<tr>
<td>1970</td>
<td>May Our "JRC-102 general-purpose computer system" is released.</td>
</tr>
<tr>
<td>1971</td>
<td>May "Japan’s first "9GHz marine RADAR" is developed.</td>
</tr>
<tr>
<td>1972</td>
<td>Jul. "Japan’s first "automotive navigation system"is developed.</td>
</tr>
<tr>
<td>1973</td>
<td>Apr. "Japan’s first "9GHz marine RADAR" is developed.</td>
</tr>
<tr>
<td>1974</td>
<td>Jul. "Japan’s first "automotive navigation system"is developed.</td>
</tr>
<tr>
<td>1975</td>
<td>Apr. "Japan’s first "9GHz marine RADAR" is developed.</td>
</tr>
<tr>
<td>1976</td>
<td>Oct. "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1977</td>
<td>Aug. "Japan’s first "9GHz marine RADAR" is delivered to Tokyo."</td>
</tr>
<tr>
<td>1978</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1979</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1980</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1981</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1982</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1983</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1984</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1985</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1986</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1987</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1988</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1989</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1990</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1991</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1992</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1993</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1994</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1995</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1996</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1997</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1998</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>1999</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2000</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2001</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2002</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2003</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2004</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2005</td>
<td>May "Japan’s first "automotive navigation system" is delivered to PAGASA in the Philippines.</td>
</tr>
<tr>
<td>2006</td>
<td>Jul. "Japan’s first "automotive navigation system"is delivered to PAGASA in the Philippines.</td>
</tr>
</tbody>
</table>